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H Open-source Al development market map

Generative Al — image Generative Al — large language model Machine Synthetic training
model developers developers |earning data — media
“ANVIDIA TOGETHER [l - training data —
deci. B  Mistal Al curation D
stability.ai ¢ craiyon @zevnerm = nugingre J@CIo o Al E—
rgilla -
W mosaic™ YMeta ADEPT .
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stability.ai Light®n < databricks
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gretel X Qdrant -
Federated Al development platforms Large language model Algorithmic
learning o oo B (LLM) application auditing & risk
platforms allegro® %, bz development management
¥ OWKIN tiﬂ BENTOML P~ mindsdb P, [ T Kern® S LangChain .
e FodML O Lightaing™ ([} mosaic™* = o I Dify C» credo | ai
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Model Model validation & monitoring Hardware-aware
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Projected worldwide spending on generative
Al solutions by enterprises, 2023-2027

$175 billion

150
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75

50

2023 25

Note: Forecasts were published in December 2023.
Source: International Data Corp.

] Open-source Al development total equity funding

Generative Al — large language
model developers

Generative Al — image model
developers

Al development platforms

Machine learning training data
curation

Feature stores & management

Model validation & monitoring

Large language model (LLM)
application development

Federated learning platforms

Version control & experiment
tracking

Hardware-aware Al optimization
Vector databases

Model deployment & serving

Synthetic training data — tabular
and text

Synthetic training data — media

Algorithmic auditing & risk
management

Source: CB Insights

$14,210M

$9,306M

$§791M

$634M
$586M
$541M
$438M
$422M
$363M
$351M
$242M
$212M
$168M

$35M

$26,926M

B2 CBINSIGHTS

1 open-source Al development equity deal count

Generative Al — large language
model developers

Generative Al —image model
developers

Al development platforms

Machine learning training data
curation

Feature stores & management
Model validation & monitoring

Large language model (LLM)
application development

Federated learning platforms

Version control & experiment
tracking

Hardware-aware Al optimization
Vector databases

Model deployment & serving

Synthetic training data — tabular
and text

Synthetic training data — media

Algorithmic auditing & risk
management

Source: CB Insights

75 deals

18 deals

25deals

24 deals

57 deals

25 deals

23 deals

29 deals

27 deals

17 deals

28 deals

44 deals

31 deals

13 deals

<ZX: CB Insights>

151 deals

&2 CBINSIGHTS

* Open-source Al development equity deal count
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OpenAl, OpCp LLC,
Google LLC, Meta Platforms Inc

2 SHAEE0 td dotel 2=

e -1 AE A2 2E5HA 2|0 7H eI E 2 ol &zt =
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-ALMH A ZHEJIIEE Me[o FEE S 2SI, R ESHHH A1 7|5 HF, Al MH| 20| FoFH
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o.. 1 X1 |:l .
o } iz
- AmSE o - OME® o - 29 - MExa
(Pre-training) (Fine-tuning) HYj = HZEZ
GPT F 2 At
370E Hole & DE oz 0of BHA| Al MH[A X Zx}of|#| O] 2 Xl Al
thEel dioje & =7t st 2 =H JHst o Bz Al MH|A H3
OpenAl | =/liE HIolEo | clIEx &= HolH LLM F9FF Gl Al | A ME[AE
FUSEUS 5 ol Al BEO| EHHS MHIA HZ A Helots HoIE
GPTE 2 0}| M (Repeat this word Holg e =gt Atdo| E2EE Mol L +=F 40 He|gd ol =5,

” ol HolE e 27| o =9 JHoImy o = LIMO| 7|8 E 27018 717t SO
forever : “poem, poem, poem”) &% ! cho M Qe ! e A 9 A ! Al A0 2} ST MHIZ9F oS
A SSE 01 = Atz Fajf 22 el o= A] k}O
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« Miflow

GitHub miflow/miflow®] 2.9.2 0| B{ T 0| 4] . \filename'0l| T8t Z2 23] (Path Traversal) 2|4 2 93|51 CVE-2023-6831

ME Q| 2= It S AAe 4= QUL CWE-22 / CWE-29

CVE-2024-0520

UL,

CVE-2023-6977

‘ miflow.data 25 0| Z8tO R ols) ZZXI7} HO|E MES XS 4 QIO csree} 22 BHOZ 0|0jH 4+

‘ EMAEO{OA U7 TC AIS H{OEHO|T} 7|50 K|3HO| Q0| O THUO| AFECZ 2 g[of HAH O CVE-2023-7018
9|7 BC ABO| FH=BIC}. CWE-502
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05. OWASP TOP 10 for LLM-1
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(Assessing the Security of GitHub Copilot's Code Contributions)
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2022 |EEE Symposium on Security and Privacy (SP)

Asleep at the Keyboard? Assessing the
Security of GitHub Copilot’s Code Contributions

Hammond Pearce  Baleegh Ahmad Benjamin Tan  Brendan Dolan-Gavitt  Ramesh Karri

Department of ECE Department of ECE Department of ESE Department of CSE Department of ECE

New York University  New York University  University of Calgary  New York University New York University
Al

Brooklyn, NY. USA  Brooklyn, NY. USA  Calg:

hammond pearce@ayuedu  bal283@nyuedy  benjamin.a * =

Absiraci—There s burgeoning interest in designing Al-based
esigning

(CWE . We explore Coplo’s prfurmance om three distioct
it performs

o wkmemes dieruy of peompts o ety of o
total, we produce §9 different scenarios for Copilot to complete,
producing 1,689 programs. Of these, we found approximately
40% to be vulnerable.

index Terms—Cybersecurity, Artificial Intelligence (AT}, code
gencration, Common Weakness Enumerations (CWEs)

L. INTRODUCTION

With increasing pressure on software developers Lo produce
code quickly, there is considerable interest in tooks and
techniques for improving productivity. The most recent
entrant into this field s machine learning (ML)-based
code generation, in which large models originally designed
for natural language processing (NLP) arc trained on vast
quantities of code and atiempt 10 provide sensible completions
as programmers write code. In June 2021, GitHub released
Copilot [1] an “Al pair programme:” that generates code in
a variety of languages given some context such as comments,
function names. and surrounding code. Copilot is built on a
large language model that is traincd on open-source code [2]
ing “public. code..with insecure coding patterns”, thus
ng rise to the potential for “synthesizeld] code that
contains these undesirable patterns” []

Although prior research has evaluated the functionality of
code generated by language models [3]. [2], there is no

B Dolan-Ciit i supporied in part by the National Science Foundsi
awad WIBOI9S. B Kami s spporied n pan by Offce of Nawal
Research Awad # NOOOI4-18-1.305K. R. Karri is supporied in pant by the
NYUNYUAD ces,

Iberta, CA Brooklyn, NY USA  Brooklyn, NY, USA

o 8 wee-tike stracme

View (CWE-1000)

g 2. Euanple ol snape o Pyt Lo Coe o e ey

Nestralization, mesning that all CWE-20 type weaknesses
e CWE707 type wesknesses. There are ather CWE-207
improper newralizatson weaknesses which are oot covered by
WE-20 cam be further
Types We show an

that implements the pat of & busic sbopping list spplication
The program asks how many sems should be in the lis (s0

the mamber input (on fine 4) is bt properly
s “reasonabic” before heing u
c

L —

exst processes that 8 wses for costinucusly scanning.
proaspeing, deciding what 10 upload. ctc- are not described in
with Xd—even though the variable is defined 2s an ‘wasigned  any official documentation. Thas, the following description i
int'—entering a negative value (e.g. ~ 1) will cause an integer
wraparound crroe (CWE-190)

contimoudy scams the

ogram and periodically uplauds
pesempurse Jprplingi Mm of the wer’s cursar, and

sl
confidence score’ foe exch of its proposed code comgletions.
with the wp-scoring (highest-comfidence) score presented 21
the default selection for the user. The wser csa choose any

marmally spectiod securty properie
may be added. Examining if Co

that require reasoming over s
outside the single code ) s beyond the

HL. Usina Givius CorLot foe & web app. Theie cuesce 4 located af line 15, snd hased
Copilet is wsed as follows'. The software developer (user) 0 ¢ code in the program, Copilos suggests an
works oa some program, editing the code in 3 plin lext ode which can be inserted.
itor. a this i, Copikot supports Visusl Stadio Code
The exact nasure of how Copilos scans code is not discloned
osed-source biack-bos, The

publacly. being 3 propeictary
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(Do Users Write More Insecure Code with Al Assistants?)
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Do Users Write More Insecure Code with Al Assistants?

Neil Perry” Megha Srivastava”
Stanford University Stanford University
ABSTRACT

Al code nssistants have emerged a5 powerful Lools that can aidin
cycle and can improve developer
h assiant v o becn fouad

the software developm
productiviy. Unfortunat
to lab cnvironments.
concems abot their usage in practice In this paper; we wnd».u
et study lo exaimisic huw wsess ilesact with Al cade assistan
10 solve 3 variety of security related tasks. Overal], we find th
participants who had access to an Al assistant wrote significant
Tess secure code than those without access to +n assistant. Parti
pants with asees to an Al asistont wese also more lkely to belie
they wiole sccute code. suggesting that such tools may lead use
10 be overconfident aboul security fws in theis code. To belt
infores the desigan of future Al-based code assistants, we release o
user-study appazatus and anonymized data to reseatchers seckis
1o build on our work at this lik.

©CS CONCEPTS

+ Security and privacy  Human and societal aspects of ¢
curity and privacy

KEYWORDS

Programming assistants, Language models, Mackine learning |
able secuity

ACM Reference Format:
Neid Pey, Megha Stivastava, Decpak Kusiar wisd Dan Bonch. 2023. 1
Gsexs Weite More Inseeuae Code with Al Assistants?. n Poceedings of |

Deepak Kumar Dan Boneh
Stanford University | UC Stanford Unsversity
San Dicgo

visks of Al axsistants in the context of how developers choose to
wse them Such wotk i impottant in order understand the pract-
<al security challenges intzoduced by Al powered code-sssistants.
and the ways users promt the Al systems to madvertently cause
security mistakes

Figare 2 i solutiun carrectnass, security, and, if in

(CCS 23] November 26-30, 2015, Copenhagen. Dermark. ACM, New o,
Y, USA, 16 pages. Bripe/dokorg L0 114513576015 3623157

1 INTRODUCTION

he experimen group, (ke AT abalty {9 produce e
i peueiBod secnts b e oo bbb repert et o A e wecure ke thanthne inthe

secarely than those in the control group whe provided imsecars sobutions (e . average of 1.3 ve. 10 for Q1)

arXiv:2211.03622v3 [cs.CR] 18 Dec 2023
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« Shift Left on Security
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«  SBOM (software Bill of Materials) 2|

« A MZ=HOIM AHESHE BoMm2| 7HE S =¥
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- 3330 oS ™ MAHL =27t =AXe = T
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Github2| 22| 9]
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Dependency graph

Dependencies Dependents

Q Search all dependencies

@ 355 Total

mio 6.8.3

shlex 1.1.8

h2 @.3.28

Detected automatically on Mar 23, 2024 (Cargo) - Cargolock - MIT

openssl 2.10.55

I,
1

Dependabot

Detected automatically on Mar 23, 2024 (Cargo) - CargoJock - MIT

Detected automatically on Mar 23, 2024 (Cargo) - CargolJock - MIT OR Apache-2.0

“wersionlnfo”:
“downloadlocat ion”:
“filegbnalyzed”: false,

"licenseConc luded™: "MIT™,
“supplier”:

"SPOEIDT - "SPDERef-rust-menchr-2.5,0",
“name” > "rust imemchr”,
"warsionlnfa": "2.5.0",
"downloadlocat ion”™: "HWOASSERTION™,
“filegbnalyzed”: false,
"licenseConcluded”: "Unlicense OR MIT",
"supplier”™: "NOASSERTIONT™,
"externalPefs": [
1
“referenceCategory”:
“referencelocator”:
"referenceType”:
h
]

"PACKAGE-MANAGER",
“pkazcargo/memchr@dz, 5. 0",
“purl”

"SPOE D" "SPD¥Ref-rust-mig-0.3.8",
“name” > "rustimio”,

"0.8.8",

"MORSSERT OM™,

"HOASSERTION™,

&, Export SBOM

@ 1high ~

£9 View Dependabot alert
1 high - 1 total

(a Cargo.lock update suggested:
mio ~» 2.8,11 2
Always verify the validity and

compatibility of suggestions with your
o1 codebase.
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« Hardening

N AUSTRALIAN
SIGHALS
Y H DIRECTORATE

Australian Government o i
Crbr Bacweiy
Australian Signals Directorate "" '\C JC chne

- Heto| Zeioh| 2 7ol =

+ System, OS, Networks 0| A = 5 A|
« AT EQ|0 E QM| A £ Hardening

Operating system selection

o

When selecting operating systems, it is important that an organisation preferences vendors that have demonstrated a
commitment fo secure-by-design and secure-by-default principles, use of memory-safe programming languages where

possible (such as C#, Go, java, Ruby, Rust and Swift), secure programming pracfices, and maintaining the security of their

products. This will assist not only with reducing the potential number of vulnerabilities in operating systems, but also

increasing the likelihood that timely patches, updates or vendor mitigations will be released to remediate any

— vulnerabilities that are found.
Code '3 4=

Control: ISM-1743; I Up Mar-23; Applicability: All; Elght: N/A

Operating sysfems are chosen from vendors that have demonstrated a commitment fo secure-by-design and secure-by-

E| L E ALE

default principles, use of memory-safe programming languages where possible, secure programming practices, and

maintaining the security of their products.

Operating system releases and versions

Newer releases of operating systems often infroduce improvements in security functionality. This can make it more
difficult for malicious actors to craft reliable exploits for vulnerabilities they discaver. Using alder releases of operating
systems, especially those no longer supported by vendors, may expose an organisation to vulnerabilities or exploitation
techniques that have since been mitigated. In addition, 64-bif versions of operatfing systems support additional security
functionality that 32-bit versions do not.

Control: ISM-1407; : 5; Up Dec-22; App y: All; Eight: ML3
The latest release, or the previous release, of aperating systems are used.

Control: ISM-1408; 5 Up :Dec-22; A

y: All; Elght: N/A

Where supported, 64-bit versions of operating systems are used.

Standard Operating Environments

Allowing users ta setup, configure and maintain their own workstations and servers can resulf in an inconsistent
operating environment. Such operating environments may assist malicious actors in gaining an initial foothold on
networks due to the higher likelihood of poarly configured or maintained workstations and servers. Conversely, a
Standard Operating Environment (SOE), provided via an automated build process or a golden image, is designed fo

facilitate a standardised and consistent operating environment within an organisation.

When SOEs are obtained from third parties, such as service providers, there are additional cyber supply chain risks that

should be considered, such as the accidental or deliberate inclusion of malicious code or configurations. To reduce the
likelihood of such occurrences, an organisation should endeavour fo obtain their SOEs from trusted third parties while

Secure Flag 8%

also scanning them for malicious code and configurations.

<EXN: =F ALO|H] E 2t MIE{(ACSC) / OS Hardening>
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